New Search

Export article
Open Access

IoT-Based Human Fall Detection System

Published: 15 February 2022
 by  MDPI

Abstract: Human falls are an issue that especially affects elderly people, resulting in permanent disabilities or even in the person’s death. Preventing human falls is a social desire, but it is almost impossible to achieve because it is not possible to ensure full prevention. A possible solution is the detection of human falls in near real-time so that help can quickly be provided. This has the potential to greatly reduce the severity of the fall in long-term health consequences. This work proposes a solution based on the internet of things devices installed in people’s homes. The proposed non-wearable solution is non-intrusive and can be deployed not only in homes but also in hospitals, rehabilitation facilities, and elderly homes. The solution uses a three-layered computation architecture composed of edge, fog, and cloud. A mathematical model using the Morlet wavelet and an artificial intelligence model using artificial neural networks are used for human fall classification; both approaches are compared. The results showed that the combination of both models is possible and brings benefits to the system, achieving an accuracy of 92.5% without false negatives.
Keywords: artificial neural network / fall detection systems / internet of things devices / Morlet wavelet

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Electronics" .
References (28)
    Cited by 5 articles
      Back to Top Top