InSight Aerothermal Environment Assessment

Abstract
The Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft, which successfully touched down on the planet surface on November 26, 2018, was proposed as a near build-to-print copy of the Mars Phoenix vehicle to reduce the overall cost and risk of the mission. Because the lander payload and the atmospheric entry trajectory were similar enough to those of the Phoenix mission, it was expected that the Phoenix thermal protection material thickness would be sufficient to withstand the entry heat load. However, allowances were made for increasing the heatshield thickness because the planned spacecraft arrival date coincided with the Mars dust storm season. The aftbody thermal protection system components were not expected to change. In a first for a U.S. Mars mission, the aerothermal environments for InSight included estimates of radiative heat flux to the aftbody from the wake. The combined convective and radiative heat fluxes were used to determine if the as-flown Phoenix thermal protection system design would be sufficient for InSight. Although the radiative heat fluxes on the aftbody were predicted to be comparable to, or even higher than the local convective heat fluxes, all analyses of the aftbody thermal protection system showed that the design would still be adequate. Aerothermal environments were computed for the vehicle from postflight reconstruction of the atmosphere and trajectory and compared with the design environments. These comparisons showed that the predicted as-flown conditions were less severe than the design conditions.

This publication has 25 references indexed in Scilit: