Abstract
The physical and chemical composition of sows was determined at first mating (no. = 6), weaning the first litter (12) and 14 days after weaning the fourth litter (24). The sows were from 108 Large White/Landrace Fl hybrid gilts allocated in a factorial arrangement according to two levels of subcutaneous fatness at parturition (12 v. 22 mm P2), two levels of lactation feeding (3 v. 7 kg) and two sizes of sucking litter (six v. 10). Treatments significantly influenced the composition of dissected carcass fat and chemical lipid, but not composition of dissected lean and chemical protein. The final body protein mass of well fed sows at the termination of parity 4 was 41 kg, and the total content of gross energy (GE) in excess of 3000 MJ, with an average of 12·4 MJ GE per kg live weight; equivalent values for the less well fed sows were 33 kg and 9·4 MJ GE per kg live weight respectively. The weights of chemical lipid and protein could be predicted from the equations: lipid (kg) = -20·4 (s.e. 4·5) + 0·21 (s.e. 0·02) live weight + 1·5 (s.e. 0·2) P2; protein (kg) = -2·3 (s.e. 1·6) + 0·19 (s.e. 0·01) live weight - 0·22 (s.e. 0·07) P2. On average, sows lost 9 kg lipid and 3 kg protein in the course of the 28-day lactation; these being proportionately about 0·16 and 0·37 of the live-weight losses respectively. Maternal energy requirement for maintenance was estimated as 0·50 MJ digestible energy (DE) per kg M0·75, while the efficiency of use of DE for energy retention was 0·28.