Abstract
This paper introduces some of the basic mechanisms relating the behavior of the spectral measure of Schrödinger operators near zero energy to the long-term decay and dispersion of the associated Schrödinger and wave evolutions. These principles are illustrated by means of the author’s work on decay of Schrödinger and wave equations under various types of perturbations, including those of the underlying metric. In particular, we consider local decay of solutions to the linear Schrödinger and wave equations on curved backgrounds that exhibit trapping. A particular application is waves on a Schwarzschild black hole spacetime. We elaborate on Price’s law of local decay that accelerates with the angular momentum, which has recently been settled by Hintz, also in the much more difficult Kerr black hole setting. While the author’s work on the same topic was conducted ten years ago, the global semiclassical representation techniques developed there have recently been applied by Krieger, Miao, and the author [“A stability theory beyond the co-rotational setting for critical wave maps blow up,” arXiv:2009.08843 (2020)] to the nonlinear problem of stability of blowup solutions to critical wave maps under non-equivariant perturbations.
Funding Information
  • Division of Mathematical Sciences (DMS-1902691)

This publication has 72 references indexed in Scilit: