Combining multidimensional chromatography-mass spectrometry and feature-based molecular networking methods for the systematic characterization of compounds in the supercritical fluid extract of Tripterygium wilfordii Hook F

Abstract
Tripterygium wilfordii Hook F from the family Celastraceae is a traditional Chinese medicine (TCM) whose principal chemical constituents are terpenoids, including sesquiterpene alkaloids and diterpenoids, which have unique and diverse structures and remarkable biological activities. In order to advance pharmacological research and guide the preparation of monomer compounds derived from T. wilfordii, a systematic approach to efficiently discover new compounds or their derivatives is needed. Herein, compound separation and identification were performed by offline reversed-phase × supercritical fluid chromatography coupled mass spectrometry (RP × SFC-Q-TOF-MS/MS) and Global Natural Product Social (GNPS) molecular networking. The 2D chromatography system exhibited a high degree of orthogonality and significant peak capacity, and SFC has an advantage during the separation of sesquiterpene alkaloid isomers. Feature-based molecular networking offers the great advantage of quickly detecting and clustering unknown compounds, which greatly assists in intuitively judging the type of compound, and this networking technique has the potential to dramatically accelerate the identification and characterization of compounds from natural sources. A total of 324 compounds were identified and quantitated, including 284 alkaloids, 22 diterpenoids and 18 triterpenoids, which means that there are numerous potential new compounds with novel structures to be further explored. Overall, feature-based molecular networking provides an effective method for discovering and characterizing novel compounds and guides the separation and preparation of targeted natural products.
Funding Information
  • Central Asian Center of Drug Discovery and Development, Chinese Academy of Sciences (CAM202104)
  • Liaoning Revitalization Talents Program (XLYC1908035)