INFLUENCE OF CALCINATION TEMPERATURE ON STRUCTURAL-DIMENSIONAL CHARACTERISTICS OF C,S-DOPED TiO2 NANOSTRUCTURES AND THEIR PHOTOCATALYTIC ACTIVITY IN THE CEFTAZIDIME AND DOXYCYCLINE PHOTODEGRADATION PROCESSES

Abstract
Mesoporous C, S-doped TiO2 nanostructures were obtained by solvothermal sol-gel method followed by calcination at different temperatures. It was found that with increasing calcination temperature, the crystallite size remains in the same range of 9–10 nm, while the morphology of TiO2 nanoparticles significantly changes, and the anatase content increases from 42% to 95%. At the same time the nanoparticle size (from 85 to 45 nm), the specific surface area (200–130 m2/g), the mesoporous area (from 170 to 70 m2/g), and the carbon (0.80–0.41%) and sulfur (1.39–0.89%) contents decrease. Varying the calcination temperature allows TiO2 nanostructures to be obtained with a certain balance of these structural-dimensional characteristics that provides high photocatalytic activity in the processes of ceftazidime and doxycycline photodegradation.