Abstract
A new spectrophotometric reagent, N,N'-bis(salicylidene)-ethylenediamine (Salen), has been synthesized and characterized through novel reaction techniques. A very simple, ultrasensitive, and nonextractive spectrophotometric method has been developed for the determination of the picotrace amount of cobalt (II) using Salen. Salen undergoes a reaction in a slightly acidic solution (0.001-0.003 M H2S04) with cobalt in 20% ethanol to give a light orange chelate, which has an absorption maximum at 459 nm. The reaction is instantaneous, and the absorbance remains stable for over 24 hours. The average molar absorption co-efficient and Sandell’s sensitivity were found to be 6.04×105 L/mol.cm and 5.0 ng/cm2 of Co, respectively. Linear calibration graphs were obtained for 0.001-40 mg/Lof Co with a detection limit of 0.1 µg/L and RSD of 0-2 %. The stoichiometric composition of the chelate is 1:1 (Co:Salen). A large excess of over 60 cations, anions and some common complexing agents such as chloride, azide, tartrate, EDTA, SCN- etc. do not interfere in the determination. The developed method was successfully used in the determination of cobalt in several Certified Reference Materials (Alloys, steel, bovine liver, human hair, drinking water, sewage sludge, soil, and sediments) as well as in some environmental waters (Potable and polluted), biological fluids (Human blood, urine, and milk), soil samples, food samples (Vegetables, rice, and wheat) and pharmaceutical samples and solutions containing both cobalt (II) and cobalt (III) as well as complex synthetic mixtures. The results of the proposed method for assessing biological, soil, food and vegetable samples were comparable with ICP-OES and AAS were found to be in excellent agreement. The method has high precision and accuracy (s = ±0.01 for 0.5 mg/L).

This publication has 32 references indexed in Scilit: