A large-scale chromosomal inversion is not associated with life history development in rainbow trout from Southeast Alaska

Abstract
In studying the causative mechanisms behind migration and life history, the salmonids–salmon, trout, and charr–are an exemplary taxonomic group, as life history development is known to have a strong genetic component. A double inversion located on chromosome 5 in rainbow trout (Oncorhynchus mykiss) is associated with life history development in multiple populations, but the importance of this inversion has not been thoroughly tested in conjunction with other polymorphisms in the genome. To that end, we used a high-density SNP chip to genotype 192 F1 migratory and resident rainbow trout and focused our analyses to determine whether this inversion is important in life history development in a well-studied population of rainbow trout from Southeast Alaska. We identified 4,994 and 436 SNPs–predominantly outside of the inversion region–associated with life history development in the migrant and resident familial lines, respectively. Although F1 samples showed genomic patterns consistent with the double inversion on chromosome 5 (reduced observed and expected heterozygosity and an increase in linkage disequilibrium), we found no statistical association between the inversion and life history development. Progeny produced by crossing resident trout and progeny produced by crossing migrant trout both consisted of a mix of migrant and resident individuals, irrespective of the individuals’ inversion haplotype on chromosome 5. This suggests that although the inversion is present at a low frequency, it is not strongly associated with migration as it is in populations of Oncorhynchus mykiss from lower latitudes.