Sang-Yod rice bran hydrolysates alleviate hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in nitric oxide deficient hypertensive rats

Abstract
Objective: To evaluate the potential therapeutic effect of Sang-Yod rice bran hydrolysates (SRH) and in combination with lisinopril against hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in rats with nitric oxide deficiency-induced hypertension. Methods: Hypertension was induced in male Sprague-Dawley rats by administration of a nitric oxide synthase inhibitor, Nω- nitro-L-arginine methyl ester (L-NAME) in drinking water for 6 weeks. Hypertensive rats were administered daily with SRH (500 mg/kg/day), lisinopril (1 mg/kg/day), or the combination of SRH and lisinopril by gastric lavage for the last 3 weeks of L-NAME treatment. Hemodynamic status, vascular reactivity to vasoactive agents, and vascular remodeling were assessed. Blood and aortic tissues were collected for measurements of oxidative stress markers, plasma angiotensin-converting enzyme (ACE) activity, plasma angiotensin II, and protein expression. Results: L-NAME induced remarkable hypertension and severe oxidative stress, and altered contents of smooth muscle cells, elastin, and collagen of the aortic wall. SRH or lisinopril alone reduced blood pressure, restored endothelial function, decreased plasma ACEs and angiotensin II levels, alleviated oxidant markers and glutathione redox status, and restored the vascular structure. The effects were associated with increased expression of endothelial nitric oxide synthase and decreased expression of gp91phox and AT1R expression. The combination of SRH and lisinopril was more effective than monotherapy. Conclusions: SRH alone or in combination with lisinopril exert an antihypertensive effect and improve endothelial function and vascular remodeling through reducing oxidative stress and suppressing elevated renin-angiotensin system.