Effect of High Pressure and Temperature on the Evolution of Si Phase and Eutectic Spacing in Al-20Si Alloys

Abstract
The microstructure of the Si phase in Al-20Si alloys solidified under high pressure was investigated. The results demonstrate that the morphology of Si phase transformed (bulk→short rod→long needle) with the increase of superheat temperature under high pressure. At a pressure of 3 GPa and a superheat temperature of 100 K, a microstructure with a uniform distribution of fine Si phases on the α-Al matrix was obtained in the Al-20Si alloy. In addition, a mathematical model was developed to analyze the spacing variation of the lamellar Al-Si eutectics under the effect of pressure. The lamellar Al-Si eutectics appeared at 2 GPa and superheat temperatures of 70–150 K, and at 3 GPa and superheat temperatures of 140–200 K. With the increase of pressure from 2 GPa to 3 GPa, the average spacing of lamellar Al-Si eutectics decreased from 1.2–1.6 μm to 0.9–1.1 μm. In binary alloys, the effect of pressure on the eutectic spacing is related to the volume change of the solute phase from liquid to solid. When the volume change of the solute phase from liquid to solid is negative, the lamellar eutectic spacing decreases with increasing pressure. When it is positive, the eutectic spacing increases with increasing pressure.
Funding Information
  • National Natural Science Foundation of China (51774105)
  • "Head Goose" team project (XNAUEA5640208420)