Apical Secretory Glycoprotein Complex Contributes to Cell Attachment and Entry by Cryptosporidium parvum

Abstract
Although Cryptosporidium is extremely efficient at penetrating mucus and invading epithelial cells in the intestine, the mechanism of cell attachment is poorly understood. To expand our understanding of this process, we characterized the antigens recognized by a monoclonal antibody that stains the apical end of invasive stages called sporozoites and merozoites. Cryptosporidium parvum is an enteric pathogen that invades epithelial cells in the intestine, where it resides at the apical surface in a unique epicellular location. Compared with those of related apicomplexan parasites, the processes of host cell attachment and invasion by C. parvum are poorly understood. The streamlined C. parvum genome contains numerous mucin-like glycoproteins, several of which have previously been shown to mediate cell attachment, although the majority are unstudied. Here, we identified the antigens recognized by monoclonal antibody (MAb) 1A5, which stains the apical end of sporozoites and mature merozoites. Immunoprecipitation with MAb 1A5 followed by mass spectrometry identified a heterodimer comprised of paralogous proteins which are related to additional orthologs in the genome of C. parvum and related species. Paralogous glycoproteins recognized by MAb 1A5 heterodimerize as a complex displayed on the parasite surface, and they also interact with lectins that suggest that they contain mucin-like, O-linked oligosaccharides. Although the gene encoding one of the paralogs was readily disrupted by CRISPR/Cas9 gene editing, its partner, which contains a mucin-like domain related to GP900, was refractory to deletion. Combined with the ability of MAb 1A5 to partially neutralize host cell attachment by sporozoites, these findings define a new family of secretory glycoproteins that participate in cell invasion by Cryptosporidium spp.IMPORTANCE Although Cryptosporidium is extremely efficient at penetrating mucus and invading epithelial cells in the intestine, the mechanism of cell attachment is poorly understood. To expand our understanding of this process, we characterized the antigens recognized by a monoclonal antibody that stains the apical end of invasive stages called sporozoites and merozoites. Our studies identify a family of glycoproteins that form heterodimers on the parasite cell surface to facilitate host cell attachment and entry. By further defining the role of mucin-like glycoproteins in host cell attachment, our studies may lead to strategies to disrupt cell adhesion and thereby decrease infection.
Funding Information
  • HHS | NIH | National Institute of Allergy and Infectious Diseases (AI145496)