Cobalt Catalysts Enable Selective Hydrogenation of CO2 toward Diverse Products: Recent Progress and Perspective

Abstract
Selective hydrogenation of carbon dioxide (CO2) into value-added chemicals has aroused great interest. The chemical inertness of CO2 and diverse reaction pathways usually require the construction of enabled catalysts. To date, cobalt (Co) catalysts characteristic of metallic and/or divalent Co components show great potential for CO2 hydrogenation. To better regulate the CO2 hydrogenation, it is necessary to summarize the current progress of cobalt catalysts for selective hydrogenation of CO2. In this Perspective, first, hydrogenation of CO2 into methane over metallic Co sites is introduced. Second, hydrogenation of CO2 into methanol and C2+ alcohols is discussed by constructing mixed-valent cobalt sites. Third, hydrogenation of CO2 into light olefins and C5+ liquid fuels over cobalt-containing hybrid catalysts is introduced. Fourth, the reaction paths for selective hydrogenation of CO2 over cobalt catalysts are illustrated. Finally, the current challenges and prospects of cobalt-based nanocatalysts for hydrogenation of CO2 are proposed.
Funding Information
  • Natural Science Foundation of Beijing Municipality (2182087)
  • Youth Innovation Promotion Association of the Chinese Academy of Sciences (216036)
  • National Natural Science Foundation of China (21722102, 51672053 and 22173024)
  • The Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000)