An Embedded Multi-Core Real-Time Simulation Platform of Basal Ganglia for Deep Brain Stimulation

Abstract
Closed-loop deep brain stimulation (DBS) paradigm is gaining tremendous favor due to its potential capability of further and more efficient improvements in neurological diseases. Preclinical validation of closed-loop controller is quite necessary in order to minimize injury risks of clinical trials to patients, which can greatly benefit from real-time computational models and thus potentially reduce research and development costs and time. Here we developed an embedded multi-core real-time simulation platform (EMC-RTP) for a biological-faithful computational network model of basal ganglia (BG). The single neuron model is implemented in a highly real-time manner using a reasonable simplification. A modular mapping architecture with hierarchical routing organization was constructed to mimic the pathological neural activities of BG observed in parkinsonian conditions. A closed-loop simulation testbed for DBS validation was then set up using a host computer as the DBS controller. The availability of EMC-RTP and the testbed system was validated by comparing the performance of open-loop and proportional-integral (PI) controllers. Our experimental results showed that the proposed EMC-RTP reproduces abnormal beta bursts of BG in parkinsonian conditions while meets requirements of both real-time and computational accuracy as well. Closed-loop DBS experiments using the EMC-RTP suggested that the platform could perform reasonable output under different kinds of DBS strategies, indicating the usability of the platform.
Funding Information
  • National Natural Science Foundation of China (61771330)
  • Tianjin Municipal Natural Science Foundation (19JCQNJC01200, 18JCZDJC32000)