New Search

Export article

Kernel-based Methods for Bandit Convex Optimization

Sébastien Bubeck, Ronen Eldan, Yin Tat Lee

Abstract: We consider the adversarial convex bandit problem and we build the first poly( T )-time algorithm with poly( n ) √ T -regret for this problem. To do so, we introduce three new ideas in the derivative-free optimization literature: (i) kernel methods, (ii) a generalization of Bernoulli convolutions, and (iii) a new annealing schedule for exponential weights (with increasing learning rate). The basic version of our algorithm achieves Õ( n 9.5 √ T )-regret, and we show that a simple variant of this algorithm can be run in poly( n log ( T ))-time per step (for polytopes with polynomially many constraints) at the cost of an additional poly( n ) T o(1) factor in the regret. These results improve upon the Õ( n 11 √ T -regret and exp (poly( T ))-time result of the first two authors and the log ( T ) poly( n ) √ T -regret and log( T ) poly( n ) -time result of Hazan and Li. Furthermore, we conjecture that another variant of the algorithm could achieve Õ( n 1.5 √ T )-regret, and moreover that this regret is unimprovable (the current best lower bound being Ω ( n √ T ) and it is achieved with linear functions). For the simpler situation of zeroth order stochastic convex optimization this corresponds to the conjecture that the optimal query complexity is of order n 3 / ɛ 2 .
Keywords: exponential weights / Convex optimization / bandit optimization / kernel methods

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of the ACM" .
References (11)
    Back to Top Top