Abstract
Graphene is a lamellar structure of graphite and it is one of important research objects in the current materials and condensed matter disciplines. It has a wide range of development prospect due to its unique structure and excellent properties. Therefore, the research on the physical properties of graphene has become a particularly important part of the present. In this study, the molecular dynamics method was mainly used to simulate the dynamic process of bending vibration of graphene nanoribbons after compressive deformation. The effects of structure size, temperature, rotation angle and layer rotation mode on the vibration frequency of the graphene nanoribbon were studied. The simulation results demonstrate that the resonant frequency of graphene nanoribbons always fluctuates to a certain extent with the changes in its structure size, temperature, rotation angle and layer rotation mode, and the length is the most important factor affecting the vibration frequency of graphene nanoribbons. And the number of the layer, temperature, rotation angle and layer rotation mode have a certain influence on the vibration frequency, which is influenced slightly by the width of the nanoribbon.