New Search

Export article
Open Access

An ensemble based approach for effective intrusion detection using majority voting

Alwi M. Bamhdi, Iram Abrar, Faheem Masoodi
TELKOMNIKA (Telecommunication Computing Electronics and Control) , Volume 19, pp 664-671; doi:10.12928/telkomnika.v19i2.18325

Abstract: Of late, Network Security Research is taking center stage given the vulnerability of computing ecosystem with networking systems increasingly falling to hackers. On the network security canvas, Intrusion detection system (IDS) is an essential tool used for timely detection of cyber-attacks. A designated set of reliable safety has been put in place to check any severe damage to the network and the user base. Machine learning (ML) is being frequently used to detect intrusion owing to their understanding of intrusion detection systems in minimizing security threats. However, several single classifiers have their limitation and pose challenges to the development of effective IDS. In this backdrop, an ensemble approach has been proposed in current work to tackle the issues of single classifiers and accordingly, a highly scalable and constructive majority voting-based ensemble model was proposed which can be employed in real-time for successfully scrutinizing the network traffic to proactively warn about the possibility of attacks. By taking into consideration the properties of existing machine learning algorithms, an effective model was developed and accordingly, an accuracy of 99%, 97.2%, 97.2%, and 93.2% were obtained for DoS, Probe, R2L, and U2R attacks and thus, the proposed model is effective for identifying intrusion.
Keywords: safety / model / intrusion detection / IDS / machine / attacks / taking / based ensemble

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Cited by 1 articles
    Back to Top Top