Lactose oxidase: An enzymatic approach to inhibit Listeria monocytogenes in milk

Abstract
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in immuno-compromised individuals. Growth of L. monocytogenes is possible at refrigeration temperatures due to its psychrotrophic nature. The use of antimicrobials in dairy products is a potential way to control L. monocytogenes growth in processes with no thermal kill step, thereby enhancing the safety of such products. Microbial-based enzymes offer a clean-label approach for control of L. monocytogenes outgrowth. Lactose oxidase (LO) is a microbial-derived enzyme with antimicrobial properties. It oxidizes lactose into lactobionic acid and reduces oxygen, generating H2O2. This study investigated the effects of LO in UHT skim milk using different L. monocytogenes contamination scenarios. These LO treatments were then applied to raw milk with various modifications; higher levels of LO as well as supplementation with thiocyanate were added to activate the lactoperoxidase system, a natural antimicrobial system present in milk. In UHT skim milk, concentrations of 0.0060, 0.012, and 0.12 g/L LO each reduced L. monocytogenes counts to below the limit of detection between 14 and 21 d of refrigerated storage, dependent on the concentration of LO. In the 48-h trials in UHT skim milk, LO treatments were effective in a concentration-dependent fashion. The highest concentration of LO in the 21-d trials, 0.12 g/L, did not show great inhibition over 48 h, so concentrations were increased for these experiments. In the lower inoculum, after 48 h, a 12 g/L LO treatment reached levels of 1.7 log cfu/mL, a reduction of 1.3 log cfu/mL from the initial inoculum, whereas the control grew out to approximately 4 log cfu/mL, an increase of 1 log cfu/mL from the inoculum on d 0. When a higher challenge inoculum of 5 log cfu/mL was used, the 0.12 g/L and 1.2 g/L treatments reduced the levels by 0.2 to 0.3 log cfu/mL below the initial inoculum and the 12 g/L treatment by >1 log cfu/mL below the initial inoculum by hour 48 of storage at refrigeration temperatures. After the efficacy of LO was determined in UHT skim milk, LO treatments were applied to raw milk. Concentrations of LO were increased, and the addition of thiocyanate was investigated to supplement the effect of the lactoperoxidase system against L. monocytogenes. When raw milk was inoculated with 2 log cfu/mL, 1.2 g/L LO alone and combined with sodium thiocyanate reduced similar to 0.8 log cfu/mL from the initial inoculum on d 7 of storage, whereas the control grew out to >1 log cfu/ mL from the initial inoculum. Furthermore, in the higher inoculum,1.2 g/L LO combined with sodium thiocyanate reduced L. monocytogenes counts from the initial inoculum by >1 log cfu/mL, whereas the control grew out 2 log cfu/mL from the initial inoculum. Results from this study suggest that LO is inhibitory against L. monocytogenes in UHT skim milk and in raw milk. Therefore, LO may be an effective treatment to prevent L. monocytogenes outgrowth, increase the safety of raw milk, and be used as an effective agent to prevent L. monocytogenes proliferation in fresh cheese and other dairy products. This enzymatic approach is a novel application to control the foodborne pathogen L. monocytogenes in dairy products.