Individual Traits and Pain Treatment: The Case of Hypnotizability

Abstract
Pharmacological, physical and cognitive treatments reduce pain by addressing all pain dimensions. Nonetheless, drugs may be ineffective, and physical activity is not always viable. In contrast, cognitive therapies have usually good outcomes, a wide range of applicability and no side effects. Their efficacy, however, is influenced by cognitive and psychophysiological traits. In this Opinion article hypnotizability is used as a model to support the view that specific psychophysiological traits and cognitive strategies can not only reduce pain, but also modulate the pain-related autonomic and immune activity, induce cortical plasticity relevant to pain control, and assist in the choice of the most appropriate treatment. Hypnotizability, or hypnotic susceptibility, is a multidimensional trait stable through life (Piccione et al., 1989) and measured by validated scales (Elkins et al., 2015) classifying highly (highs), medium (mediums), and low hypnotizable subjects (lows). It is associated with brain morpho-functional peculiarities (Landry et al., 2017; Picerni et al., 2019) and displays correlates in the sensorimotor (Ibáñez-Marcelo et al., 2019; Santarcangelo and Scattina, 2019), cardiovascular (Jambrik et al., 2004a,b, 2005; Santarcangelo et al., 2012) and cognitive-emotional domain (Diolaiuti et al., 2019). Both highs and lows represent about 15% of the population which consists mainly of mediums (70%). In healthy subjects the ability to control pain through suggestions for analgesia is linearly correlated with hypnotizability scores (Fidanza et al., 2017). Hypnotic treatments, however, are particularly important for patients with neuropathic and musculo-skeletal pain (Castel et al., 2007; Carli et al., 2008; Jensen et al., 2009a,b; Jensen and Patterson, 2014), which are seldom responsive to pharmacological treatments. They have been found more effective than any other psychological intervention (Jensen et al., 2020), although high hypnotizability predicts better outcomes also in patients, owing to the highs' greater high proneness to modify their bodily condition according to suggestions, and, thus, to relax (De Benedittis et al., 1994), to their peculiar imagery abilities (Ibáñez-Marcelo et al., 2019), and to their attitude to be deeply absorbed in their own mental images (Vanhaudenhuyse et al., 2019). The suggestions for analgesia are requests to imagine that the experienced pain is out of the body or limited to a small part of it, or that a glove prevents one to perceive any nociceptive stimulation. They are effective on acute/procedural, post-surgery and chronic pain (Jensen and Patterson, 2014; Facco, 2016) and, as most suggestions (Green and Lynn, 2011; Santarcangelo, 2014), can be efficaciously administered in the ordinary state of consciousness, thus not necessarily following the induction of the hypnotic state (Derbyshire et al., 2009; Paoletti et al., 2010; Santarcangelo et al., 2012). In highs, suggestions-induced analgesia, which can be focused on the sensory and/or emotional dimension of pain, is not accompanied by release of endogenous opiates, but is sustained by the modulation of the activity and connectivity of the pain matrix (Faymonville et al., 2006; Casiglia et al., 2020). Interestingly, the suggestions for analgesia have been found effective also in healthy mediums undergoing nociceptive stimulation (Fidanza et al., 2017) and in chronic pain patients independently from hypnotizability (Elkins et al., 2007; Jensen, 2011; Jensen and Patterson, 2014; Mazzola et al., 2017; Facco et al., 2018; Sandvik et al., 2020). This can be accounted for by expectation of/motivation to analgesia (Milling et al., 2005; Krystek and Kumar, 2016; Montgomery et al., 2018; Perri et al., 2020) leading to placebo responses (Benedetti, 2013) which can reduce pain and pain-related psychological symptoms in the general population (Liossi et al., 2006; Brugnoli, 2016; Wortzel and Spiegel, 2017; Rousseaux et al., 2020). Thus, suggestions may induce non opioid analgesia in highs, opioid placebo responses in lows and, probably, mixed reactions in mediums. It is particularly interesting, in this respect, that, during hypnotic sessions, oxytocin – the hormone promoting social relationships and acquiescent behavior - is released in the hypnotist and the client and that, in the latter, the lower the hypnotizability score the larger the OXT release. A further contribution to the hypnotist-client relation could be the level of intimacy which has been associated with the polymorphism of the serotonin transporter 5-HTTLPR gene. Its variant associated with greater efficiency is not significantly associated with hypnotizability but may enhance the experience of “rapport” independently from it (Katonai et al., 2017). In brief, suggested analgesia occurs in the general population, although through different mechanisms (Santarcangelo and Consoli, 2018). In addition, in contrast to “constructive imagery” (inducing sensory experiences in the absence of actual stimulations), obstructive suggestions such as analgesia and anesthesia aimed at reducing the perception of actual sensory stimulations can be experienced also by lows if they report mental images as vivid as highs do (Santarcangelo et al., 2010). Thus, in lows, imagery and placebo responses could co-operate in the response to suggestions for analgesia. In the absence of explicit suggestions for analgesia, hypnotizability related differences in pain thresholds (Hilgard, 1967; Agargün et al., 1998; Santarcangelo et al., 2013; Kramer et al., 2014) and perceived pain intensity (Santarcangelo et al., 2010) have been seldom reported. Several studies, however, describe hypnotizability-related differences in genetic polymorphisms and brain neurotransmitters content which may be relevant to pain control in the presence of suggestions and/or to the choice of pain treatments. In fact: a. highs display...