Impacts of Thermal Conductivity and Variable Viscosity on the Dissipative Heat and Species Transport of MHD Flow in Porous Media

Abstract
The investigation of dissipative heat and species diffusion of a conducting liquid under the combined influence of buoyancy forces in a moving plate is examined in the existence of magnetic field. The flowing liquid heat conductivity and viscosity are taken to be linearly varied as a temperature function. The governing derivative equations of the problem are changed to anon-linear coupled ordinary derivative equations by applying similarity quantities. The dimensionless model is solved using shooting technique along with the Runge-Kutta method. The outcomes for the flow wall friction, heat gradient and species wall gradient are offered in table and qualitatively explained. The study revealed that the Newtonian fluid viscosity can be enhanced by increasing the fluid flow medium porosity and the magnetic field strength. Hence, the study will improve the industrial usage of Newtonian working fluid.