The effect of process current parameters on the properties of oxide layers under plasma electrolytic oxidation of AMg6 alloy

Abstract
The effect of current density and current ratio in the cathodic and anodic half-cycles during prolonged (180 minutes) plasma electrolytic oxidation (PEO) of AMg6 wrought alloy on the oxide layer wear and corrosion resistance were studied. It was established that the best wear resistance is achieved in the oxide layers obtained in the “soft sparking” mode (negative-to-positive pulse ratios of 1.15–1.30) at current densities of 9–15 A dm−2, and the best set of wear resistance and corrosion resistance – in the oxide layers obtained in “symmetrical” mode (negative-to-positive pulse ratio of 1.00).