PREPARATION AND CHARACTERIZATION OF POLYMERIC NANOPARTICLES CONTAINING METRONIDAZOLE

Abstract
Background (including purposes): Periodontitis is a chronic bacterial infection destroying tooth supporting tissues. Although metronidazole exhibits a high effectiveness in the periodontitis treatment, its fast release and the usage frequency of several times per day can become obstacles for the local treatment. Therefore, nanotechnology is necessary to extend the duration of action and reduce the frequency of drug usage per day. The aim of this study was to formulate metronidazole nanoparticles by the nanoprecipitation method and to evaluate their physicochemical properties. Materials and methods: Metronidazole, Eudragit RS100 polymer were used in this study. Nanoparticles containing metronidazole were prepared by the nanoprecipitation method. The factors of the formulation and manufacturing process of nanoparticles containing metronidazole were investigated. The resulting nanoparticles were characterized in terms of the particle size, polydispersed index (PDI), encapsulation efficiency, etc. Results: The nanoparticles containing metronidazole were successfully prepared with the spherical shape, the particle size of 201.9 ± 5.6 nm, PDI of 0.092 ± 0.014, and entrapment efficiency of 46.28 ± 1.18%. These nanoparticles could prolong the drug release (53.45 ± 1.49% at 24 hours). The Korsmeyer-Peppas equation best described the release kinetics of the drug from metronidazole nanoparticles. Key words: Metronidazole, nanoparticle, periodontitis