Transport and deposition of Saharan dust observed from satellite images and ground measurements

Abstract
Haboob occurrence strongly impacts the annual variability of airborne desert dust in North Africa with more dust raised from erodible surfaces in the early summer (monsoon) season when deep convective storms are common but soil moisture and vegetation cover are low. On 27 June 2018, a large dust storm is initiated in North Africa associated with an intensive westward dust transport. Far away from emission sources, dust is transported over the Atlantic for the long distance. Dust plume is emitted by a strong surface wind and becomes a type of haboob when it merges with the southeastward deep convective system in central Mali at 0200 UTC (27 June). We use satellite observations to describe and estimate the dust mass concentration during the event. Approximately 93% of emitted dust is removed from the atmosphere between sources (10°N–25°N; 1°W–8°E) and the African coast (6°N–21°N; 16°W–10°W). The convective cold pool has induced large economic and healthy damages, and death of animals in the northeastern side of Senegal. ERA5 reanalysis have shown that the convective mesoscale impacts strongly the climatological location of the Saharan heat low (SHL).