Laminar composite materials for unmanned aircraft wings

Abstract
Unmanned Aerial Vehicles (UAVs) have high popularity, especially in the military field, but are now also being applied to the private and public sectors. One of the UAV components that require high material technology is the wing. The latest material technology developed as a material for unmanned aircraft wings is a composite material that has high strength and lightweight. This research aims to identify composite materials that can be used for unmanned aircraft wing structures. The method used in this research is a qualitative method with a literature study approach. The results of this theoretical study show that some of the latest composite materials that have been developed into materials for unmanned aircraft wings are Laminar Composites with a sandwich structure. Laminar and sandwich composites consist of various constituent materials such as Balsa wood fiber-glass and polyester resin, microparticles, Carbon Fibre Reinforced Polymer, polymer matrix composites reinforced with continuous fibers, Polymer matrix composites, E-glass/Epoxy, Kevlar/Epoxy, Carbon/Epoxy, woven fabrics, acrylonitrile butadiene styrene-carbon (ABS) laminated with carbon fiber reinforced polymer (CFRP) and uniaxial prepreg fabrics. Laminar and sandwich composite materials are a reference for developing unmanned aircraft wing structures that have resistant strength and lightweight.