New Search

Export article
Open Access

Decision making in inventory control by using artificial neural networks

Lorenzo Cevallos-Torres, Miguel Botto Tobar, Angela Díaz Cadena, Oscar León-Granizo

Abstract: The purpose of this work is to increase the sales of a store devoted to the purchase and sale of soft drinks, even though the store's inventory is overstocked. This occurs as a result of the business's lack of an effective management system that controls product ordering. Additionally, there is no analysis of future sales owing to the variations that may occur because of unforeseen occurrences. The main criterion was that the proprietors of the business submit monthly records from 2017 to July 2019. To accomplish this objective completely, we used the Monte Carlo simulation method to obtain data from August to December 2019; and neural networks to obtain data for all monthly periods in the years 2020, 2021, and 2022, which enabled us to generate records of demand and stock for each of the products. Finally, it was shown that the application of neural networks enables the solution of vehicle control issues, resulting in a maximization of more than 22% of sales, thus achieving the goal and giving an optimum solution to the company.
Keywords: artificial neural networks / Decision making / monthly / store / sales / result / control

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Sustainable Engineering and Innovation" .
Back to Top Top