COMPUTER SIMULATION OF HEAT TRANSFER DURING DRYING AND PREHEATING OF WET IRON ORE IN A ROTARY KILN

Abstract
In the present study, an improved numerical heat transfer model has been developed for a rotary kiln used for drying and preheating of wet iron ore. The present model includes radiation exchange among hot gas, refractory wall and the solid surface, transient conduction in the refractory wall, and mass and energy balances of the hot gas and the solids. The contribution of gas convection has also been taken into account in terms of a fraction of the radiative heat transfer to the inner refractory wall and the solid surface. The computer results show that the present model can predict the length of the kiln as well as axial solid and gas temperature distributions with reasonably good accuracy. A detailed parametric study reveals that a good design of a rotary kiln requires medium gas flow rate, small angle of inclination and low rotational speed of the kiln.

This publication has 6 references indexed in Scilit: