New Search

Advanced search
Open Access

Enhancement of K-Parameter Using Hybrid Statifies Sampling and Genetic Algorithm

Rima Dias Ramadhani, Agus Priyanto, Muhammad Fajar Sidiq
Published: 1 February 2018
JURNAL INFOTEL , Volume 10; doi:10.20895/infotel.v10i1.343

Abstract: Clustering is a technique used to classify data into clusters based on their similarities. K-means is a clustering algorithm method that classifies the objects based on their closest distance to the cluster center to the groups that have most similarities among the members. In addition, K-means is also the most widely used clustering algorithm due to its ease of implementation. However, the pro cess of selecting the centroid on Kmeans still randomly. This results K-means is often trapped in local minimum conditions. Genetic algorithm is used in this research as a metaheuristic method where the algorithm can support K-means in reaching global optimum function. Besides, the stratified sampling is also used in this research, where the sampling functions by dividing the population into homogeneous areas using stratification variables. The validation value of the proposed method with iris dataset is 0.417, while the K-means is only 0.662.
Keywords: genetic algorithm / metaheuristic / clustering algorithm / K means / Data into Clusters / Algorithm Method / Clustering Is A Technique

Share this article

Click here to see the statistics on "JURNAL INFOTEL" .