Atypical Intrinsic Hemispheric Interaction Associated with Autism Spectrum Disorder Is Present within the First Year of Life

Abstract
Autism spectrum disorder (ASD) is characterized by atypical connectivity lateralization of functional networks. However, previous studies have not directly investigated if differences in specialization between ASD and typically developing (TD) peers are present in infancy, leaving the timing of onset of these differences relatively unknown. We studied the hemispheric asymmetries of connectivity in children with ASD and infants later meeting the diagnostic criteria for ASD. Analyses were performed in 733 children with ASD and TD peers and in 71 infants at high risk (HR) or normal risk (NR) for ASD, with data collected at 1 month and 9 months of age. Comparing children with ASD (n = 301) to TDs (n = 432), four regions demonstrated group differences in connectivity: posterior cingulate cortex (PCC), posterior superior temporal gyrus, extrastriate cortex, and anterior prefrontal cortex. At 1 month, none of these regions exhibited group differences between ASD (n = 10), HR-nonASD (n = 15), or NR (n = 18) infants. However, by 9 months, the PCC and extrastriate exhibited atypical connectivity in ASD (n = 11) and HR-nonASD infants (n = 24) compared to NR infants (n = 22). Connectivity did not correlate with symptoms in either sample. Our results demonstrate that differences in network asymmetries associated with ASD risk are observable prior to the age of a reliable clinical diagnosis.