New Search

Export article
Open Access

Optical Fiber Distributed Sensing Network for Thermal Mapping in Radiofrequency Ablation Neighboring a Blood Vessel

Published: 8 December 2022
 by  MDPI

Abstract: Radiofrequency ablation (RFA) is a minimally invasive form of thermotherapy with great potential in cancer care, having the capability of selectively ablating tumoral masses with a surface area of several cm2. When performing RFA in the proximity of a blood vessel, the heating profile changes due to heat dissipation, perfusion, and impedance changes. In this work, we provide an experimental framework for the real-time evaluation of 2D thermal maps in RFA neighboring a blood vessel; the experimental setup is based on simultaneous scanning of multiple fibers in a distributed sensing network, achieving a spatial resolution of 2.5 × 4 mm2 in situ. We also demonstrate an increase of ablating potential when injecting an agarose gel in the tissue. Experimental results show that the heat-sink effect contributes to a reduction of the ablated region around 30–60% on average; however, the use of agarose significantly mitigates this effect, enlarging the ablated area by a significant amount, and ablating an even larger surface (+15%) in the absence of blood vessels.
Keywords: radiofrequency ablation / optical fiber sensors / distributed sensors / cancer thermotherapies / mini-invasive therapy

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Biosensors" .
References (37)
    Back to Top Top