Metal Nanoparticle Synthesis Using Fruit Extracts as Reducing Agents and Comparative Studies with a Chemical Reducing Agent

Abstract
Nanoparticle synthesis using plant extracts is biologically safe, cost-effective, and environment-friendly, hence attracting many researchers owing to its advantages over chemical or physical methods. In the current study copper and silver nanoparticles have been synthesized by chemical and biological methods (using fruit extract). The leftover fruits collected from the fruit vendors and were used for the study, such as guava (Psidium guajava L), and tomato (Solanum lycopersicum) as a source of ascorbic acid, while lemon (Citrus limon (L.) Osbeck) and orange (Citrus X sinensis) as a source of citric acid. Quantification of ascorbic acid and citric acid present in fruit extract was performed by Iodometric and acid-base titrations, respectively, followed by Thin Layer Chromatography (TLC) to confirm their role in nanoparticle production. The synthesized nanoparticles were characterized by UV–visible (UV–VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The number of particles produced with fruit extract as a reducing agent was more compared to chemical methods. The size and structure of the synthesized nanoparticles produced using fruit extracts were similar to those produced chemically. Also, the antibacterial effect of Cu and Ag nanoparticles was seen against Escherichia coli and Streptococcus pyogenes strains.