Soliton Solutions of Generalized Third Order Time-Fractional KdV Models Using Extended He-Laplace Algorithm

Abstract
In this research, the He-Laplace algorithm is extended to generalized third order, time-fractional, Korteweg-de Vries (KdV) models. In this algorithm, the Laplace transform is hybrid with homotopy perturbation and extended to highly nonlinear fractional KdVs, including potential and Burgers KdV models. Time-fractional derivatives are taken in Caputo sense throughout the manuscript. Convergence and error estimation are confirmed theoretically as well as numerically for the current model. Numerical convergence and error analysis is also performed by computing residual errors in the entire fractional domain. Graphical illustrations show the effect of fractional parameter on the solution as 2D and 3D plots. Analysis reveals that the He-Laplace algorithm is an efficient approach for time-fractional models and can be used for other families of equations.

This publication has 44 references indexed in Scilit: