Application Overview of Quantum Computing for Gas Turbine Design and Optimization

Abstract
Conceptual designs require optimization methods to identify the best fit in the system. The article investigates the application of quantum computation in gas turbine design and simulation problems with current technologies, approaches and potential capabilities. Quantum optimization algorithms and quantum annealers help in predicting overall efficiency and optimizing various operating parameters of the gas turbine. A comparison of both classical and quantum computers has been discussed briefly. The classical model challenges are mitigated with the use of quantum computation. A novel hybrid model for simulating gas turbines has been proposed, which consists of a combination of both physics and machine learning to eliminate few of the critical problems faced. This review elaborates application of quantum computing based machine learning for design and optimization of a gas turbine. The overall states of the gas paths of gas turbines could be analyzed using the quantum computing model in the future.