
Rectangular microstrip antenna design with multi-slotted patch and partial grounding for performance enhancement
Published: 1 August 2022
International Journal of Electrical and Computer Engineering (IJECE)
,
Volume 12,
pp 3859-3868; https://doi.org/10.11591/ijece.v12i4.pp3859-3868
Abstract: This paper presents design of a rectangular microstrip patch antenna by using multi-slotted patch and partial grounding plane techniques for both the gain and bandwidth enhancement at the same time. The antenna is designed and simulated for ultra-wideband (UWB) applications using a high frequency structure simulator (HFSS) on FR4_epoxy substrate having a size of 30×20 mm with a dielectric permittivity of 4.4, a tangent loss of 0.02, and a thickness of 0.8 mm and excited by a simple 50 Ω microstrip feed line. The simulation results show that the antenna attains an improved gain of 8.06 dB with a wider impedance bandwidth of 19.7 GHz ranges from 3.15 to 22.85 GHz. The antenna also achieves an efficiency of 96.83% with a return loss of -28.35 dB, and a directivity of 9.39 dB within the entire frequency range. These results imply that the deployment of multi-slotted patch and partial grounding techniques in designing a rectangular microstrip patch antenna is effective in improving its performance.
Keywords: antenna / slotted patch / multi slotted / partial grounding / rectangular microstrip / GHz
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "International Journal of Electrical and Computer Engineering (IJECE)" .