The DEAD-box RNA helicase CshA is required for fatty acid homeostasis in Staphylococcus aureus

Abstract
Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan. DEAD-box RNA helicases are highly conserved proteins found in all domains of life. By acting on RNA secondary structures they determine the fate of RNA from transcription to degradation. Bacterial DEAD-box RNA helicases are not essential under laboratory conditions but are required for fitness and under stress conditions. Whereas many DEAD-box protein mutants display a cold sensitive phenotype, the underlying mechanisms have been studied only in few cases and found to be associated with ribosome biogenesis. We aimed here to elucidate the cold sensitivity of a cshA mutant in the Gram-positive opportunist pathogen Staphylococcus aureus. Our study revealed for the first time that part of the cold sensitivity is related to the inability of the bacterium to adapt the cytoplasmic membrane to lower temperatures. We propose that straight-chain fatty acid synthesis, reduced to sustain growth at lower temperature, is maintained due to inefficient turn-over of the pyruvate dehydrogenase mRNA, leading to elevated acetyl-CoA levels. This study allowed us to unravel at least in part the cold sensitive phenotype and to show that the pyruvate dehydrogenase activity plays an important function in the regulation of fatty acid composition of the membrane, a process that remains poorly understood in Gram-positive bacteria.
Funding Information
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (188736)
  • Canton de Genève