Selective Reagent Ion Mass Spectrometric Investigations of the Nitroanilines

Abstract
This paper presents an investigation of proton and charge transfer reactions to 2-, 3- and 4-nitroanilines (C6H6N2O2) involving the reagent ions H3O+·(H2O)n (n = 0, 1 and 2) and O2+, respectively, as a function of reduced electric field (60–240 Td), using Selective Reagent Ion–Time-of-Flight–Mass Spectrometry (SRI–ToF–MS). To aid in the interpretation of the H3O+·(H2O)n experimental data, the proton affinities and gas-phase basicities for the three nitroaniline isomers have been determined using density functional theory. These calculations show that proton transfer from both the H3O+ and H3O+·H2O reagent ions to the nitroanilines will be exoergic and hence efficient, with the reactions proceeding at the collisional rate. For proton transfer from H3O+ to the NO2 sites, the exoergicities are 171 kJ mol−1 (1.8 eV), 147 kJ mol−1 (1.5 eV) and 194 kJ mol−1 (2.0 eV) for 2-, 3- and 4-nitroanilines, respectively. Electron transfer from all three of the nitroanilines is also significantly exothermic by approximately 4 eV. Although a substantial transfer of energy occurs during the ion/molecule reactions, the processes are found to predominantly proceed via non-dissociative pathways over a large reduced electric field range. Only at relatively high reduced electric fields (> 180 Td) is dissociative proton and charge transfer observed. Differences in fragment product ions and their intensities provide a means to distinguish the isomers, with proton transfer distinguishing 2-nitroaniline (2–NA) from 3- and 4-NA, and charge transfer distinguishing 4-NA from 2- and 3-NA, thereby providing a means to enhance selectivity using SRI–ToF–MS.
Funding Information
  • H2020 Marie Skłodowska-Curie Actions (674911)