New Search

Export article

Assessing the active-passive approach at variant incidence angles for microwave brightness temperature downscaling

Peng Guo, , Jiancheng Shi, Hongxin Xu, Xiuwei Li, Shengda Niu
International Journal of Digital Earth pp 1-21; doi:10.1080/17538947.2021.1907461

Abstract: The Terrestrial Water Resources Satellite (TWRS) campaign is a planned Chinese candidate satellite mission, and a one-dimensional synthetic aperture technology will be used, resulting in variant incidence angles for collecting synchronous active-passive observations at L-band, which would make brightness temperature (Tb) downscaling especially challenging when aiming to improve the spatial resolution of soil moisture measurements. In this study, two active-passive Tb downscaling algorithms, the time-series regression (TSR) and spectral analysis (SA) algorithms, are assessed comprehensively based on airborne experimental datasets. The results with data collected during the Soil Moisture Experiment 2002 (SMEX02) showed that both approaches could provide a reliable downscaled Tb at the same incidence angle. Based on the ground and airborne active-passive observations under variant incidence angles from the Soil Moisture Experiment in the Luan River (SMELR) it can be shown that the linear relationship between Tb and σ is still robust under the case of variant incidence angles, and Tb (both h- and v-pol) is better correlated to σvv for most cases than σhh. Both downscaling approaches can be applied to active-passive observations under varying incidence angles. Moreover, SA method performed better than the TSR method according to the lower RMSE values and higher correlation.
Keywords: Downscaling / brightness temperature / active-passive / variant incidence angle / SMELR

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "International Journal of Digital Earth" .
References (41)
    Cited by 1 articles
      Back to Top Top