Molecular dynamics simulation of synchronization of a driven particle

Abstract
Synchronization plays an important role in many physical processes. We discuss synchronization in a molecular dynamics simulation of a single particle moving through a viscous liquid while being driven across a washboard potential energy landscape. Our results show many dynamical patterns as the landscape and driving force are altered. For certain conditions, the particle's velocity and location are synchronized or phase-locked and form closed orbits in phase space. Quasi-periodic motion is common, for which the dynamical center of motion shifts the phase space orbit. By isolating synchronized motion in simulations and table-top experiments, we can study complex natural behaviors important to many physical processes.

This publication has 25 references indexed in Scilit: