New Search

Export article
Open Access

Other versions available

Optimizing Child Nutrition Education With the Foodbot Factory Mobile Health App: Formative Evaluation and Analysis

Jacqueline Marie Brown, Robert Savaglio, Graham Watson, Allison Kaplansky, , , ,
Published: 17 April 2020

Abstract: Background Early nutrition interventions to improve food knowledge and skills are critical in enhancing the diet quality of children and reducing the lifelong risk of chronic disease. Despite the rise of mobile health (mHealth) apps and their known effectiveness for improving health behaviors, few evidence-based apps exist to help engage children in learning about nutrition and healthy eating. Objective This study aimed to describe the iterative development and user testing of Foodbot Factory, a novel nutrition education gamified app for children to use at home or in the classroom and to present data from user testing experiments conducted to evaluate the app. Methods An interdisciplinary team of experts in nutrition, education (pedagogy), and game design led to the creation of Foodbot Factory. First, a literature review and an environmental scan of the app marketplace were conducted, and stakeholders were consulted to define the key objectives and content of Foodbot Factory. Dietitian and teacher stakeholders identified priority age groups and learning objectives. Using a quasi-experimental mixed method design guided by the Iterative Convergent Design for Mobile Health Usability Testing approach, five app user testing sessions were conducted among students (ages 9-12 years). During gameplay, engagement and usability were assessed via direct observations with a semistructured form. After gameplay, qualitative interviews and questionnaires were used to assess user satisfaction, engagement, usability, and knowledge gained. Results The environmental scan data revealed that few evidence-based nutrition education apps existed for children. A literature search identified key nutrients of concern for Canadian children and techniques that could be incorporated into the app to engage users in learning. Foodbot Factory included characters (2 scientists and Foodbots) who initiate fun and engaging dialogue and challenges (minigames), with storylines incorporating healthy eating messages that align with the established learning objectives. A total of five modules were developed: drinks, vegetables and fruit, grain foods, animal protein foods, and plant protein foods. Seven behavior change techniques and three unique gamified components were integrated into the app. Data from each user testing session were used to inform and optimize the next app iteration. The final user testing session demonstrated that participants agreed that they wanted to play Foodbot Factory again (12/17, 71%), that the app is easy to use (12/17, 71%) and fun (14/17, 88%), and that the app goals were clearly presented (15/17, 94%). Conclusions Foodbot Factory is an engaging and educational mHealth intervention for the Canadian public that is grounded in evidence and developed by an interdisciplinary team of experts. The use of an iterative development approach is a demonstrated method to improve engagement, satisfaction, and usability with each iteration. Children find Foodbot Factory to be fun and easy to use, and can engage children in learning about nutrition.
Keywords: mHealth / children / child nutrition sciences / mobile apps / health education
Other Versions

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "JMIR Formative Research" .
References (42)
    Cited by 3 articles
      Back to Top Top