Abstract
The design mentality of an optimal metalens model, based on the electromagnetic susceptibility, a synthesis of subwavelength-thick metasurfaces (MSs) is presented in this paper. First, based on the finite difference method of generalized sheet transition conditions, the surface susceptibility function of the MS with spatial discontinuities can be determined. Then, the paper analyzed the remaining corresponding physical field conditions for the scale of metalens. In order to adapt to the physical limitations encountered in the near-field focusing of the metalens, a standard parabolic phase design is proposed in this paper, and its upsides and downsides of the two-phase processing in different aspects are compared. Using COMSOL software with numerical simulation, it can be seen that the standard design can easily obtain high resolution in the near field, while the focusing effect is more stable when the focal length is small by the parabolic phase design.