Abstract
In this study, the design, manufacture and thermal performance analysis of a Fresnel lens driven hot water/steam generator are presented. The designed system is suitable for domestic and industrial hot water/steam usage and can be easily scaled up to meet different capacity needs. In the first step of the research, thermal behaviour of the cast plate heat exchanger driven by a Fresnel lens with a concentration ratio of 100 is investigated at different working fluid velocities (0.6, 0.8, 1.0, 1.5 and 2.0 m/s) and at different absorber surface temperatures (700, 800, 900 and 1000 °C). Outlet temperature of working fluid from the cast plate heat exchanger is determined through a 3D CFD model for each case. The capacity of the steam generator for different operating times (h = 1, 2 and 3 hours) is also evaluated. The highest working fluid temperature at the outlet of heat exchanger is 914.8 °C for T_cp= 1000 °C and V_wf = 0.6 m/s. On the other hand, the lowest temperature is observed as 424.7 °C for T_cp = 700 °C and V_wf = 2.0 m/s. The steam capacity of the system for h = 3 hours is determined as 1696.5 and 508.9 kg in the best (V_wf = 2.0 m/s) and worst cases (V_wf = 0.6 m/s), respectively.
Funding Information
  • Turkish Academy of Sciences