Study on Transverse Deformation Characteristics of a Shield Tunnel under Earth Pressure by Refined Finite Element Analyses

Abstract
We establish an elaborate numerical model with which to investigate the deformation characteristics of segmental lining. The numerical model contains reinforcement and connecting bolts that previous numerical studies have generally neglected. We validated the model parameters using a full-scale model test result. Based on this numerical model, we studied the deformation characteristics of segmental lining. Convergence, joint deformation, bolt stress, and reinforcement stress were systematically analyzed under different loading conditions. Furthermore, we discuss the relationships between convergence and joint opening, bolt stress and joint opening. The deformation characteristics of segmental lining are revealed. When the lining is deformed by earth pressure, plastic hinges form at the joints. The segment rotates around the plastic hinge, which is the main reason for segmental lining deformation under earth pressure. Horizontal convergence is a single index to reflect the deformation of tunnel rings, representing the overall deformation of the ring to a certain extent but not the deformation characteristics of the joint. When the loading conditions differ, the relationship between joint opening and horizontal convergence is consistent for some joints and inconsistent for others.