An Active Power Filter with Energy Storage and Double DC Conversion for Power Surge Compensation

Abstract
This paper presents a single-phase power filter with an energy storage bidirectional DC/DC converter, both of which are equipped with separate capacitor-based DC links that provides good transient response and reduce energy storage capacity. The device is dedicated to the compensation of active power surges generated by nonlinear loads characterized by intermittent operation, where the operating time of a device in relation to the idle time is relatively short. As a compensated and filtered object, the single-phase spot welding machine with a thyristor current controller was assumed. In the case of such devices, the feeder has to be dimensioned for the peak loads, which increase the cost of installation—due to the fact that the used components have to be oversized. The proposed solution can produce measurable economic benefits by reducing the rated power necessary to energize periodically operating loads and improve the indicators of electrical energy quality. An elaborated control algorithm based on a switchable control structure provides a fast and good transient response. The work contains a comprehensive analysis of storage sizing, confirmed by simulation results performed in the Matlab and Simulink environment. Based on the analyses carried out, the laboratory model of the device was implemented and experimental verification performed.

This publication has 26 references indexed in Scilit: