Abstract
In this study, we isolated and characterized rock-weathering bacteria from the surfaces of less and more altered tuffs, along with the adjacent soils, with respect to their rock weathering pattern, stress resistance, community structure, and the changes in these rocks and soils. Using a moderate-nutrition medium, we obtained 150 isolates from the rocks and soils. The rock-weathering patterns of the isolates were characterized using batch cultures that measure the quantity of Si, Al, and Fe released from tuff under aerobic conditions. Based on the potential of the bacterial influence on the element releases, the isolates could be grouped into highly, moderately, and least effective element solubilizers, respectively. Significantly more highly effective Al and Fe solubilizers were observed in the altered rocks, while the soils had more highly effective Si solubilizers. Furthermore, more isolates from the altered rocks significantly acidified the culture medium in the rock weathering process. Dynamic changes in the element release showed the distinct element releasing patterns of three selected isolates. More isolates from the altered rocks could grow at 4 °C or at 55 °C or at pH 4. Some isolates from the altered rocks could grow at pH 10 and with 10–15% (w/v) NaCl. The altered rocks and the soils existed in diverse and different highly weathering-specific culturable rock-weathering community structures. The changes in the culturable weathering communities between the altered rocks and the soils were attributable not only to major bacterial groups but also to a change in the minor population structure.
Funding Information
  • Bengbu Medical College (BYKY1611ZD)

This publication has 43 references indexed in Scilit: