Abstract
Cement-based grouts are widely used thanks to its outstanding features such as high workability, non-separation, non-bleeding, easy to fulfill small gaps with complex shapes. This paper descrcibes the first phase of a series of laboratory experiments that examined the ability of production of self - levelling mortar at the University of Transport and Communications. The Portland cement-based grout incorporated superplasticizer, fly ash, fine aggregate, water along with expansion agent to match as closed as possible the given high strength non-shrink grout. The experimental study focused on the performance of non-shrink grouts regarding the flowability, expansion and bleeding, strengths and drying shrinkage of the test grout mixtures. The high range water reducer (HRWR) at dosage of 1% by weight of cement was used as a flowability modifying chemical admixture to prevent water segregation and leads to an increase in compressive strength. The parameter tests consist of water-cement ratios, and fixed dosages of superplasticizer and expansive agent. To examine the flowability of grout mortars, the flow cone test was applied. The flow cone test result indicated that there were three proportional of grouts that can meet the requirement of fluidity. The compressive strength of specimens was tested according to ASTM C349-14. It was concluded that the compositions of grouts at a water-cement ratio of from 0.29 to 0.33 have compressive strengths greater than 60 MPa. The tested specimens using the expansive agent with the dosage recommended by the manufacturer meet the non-shrinkage requirement of a grout. The experimental results have demonstrated the ability of production of high strength non-shrink grouts.