Modelling optimal vaccination strategy for SARS-CoV-2 in the UK

Top Cited Papers
Open Access
Abstract
The COVID-19 outbreak has highlighted our vulnerability to novel infections. Faced with this threat and no effective treatment, in line with many other countries, the UK adopted enforced social distancing (lockdown) to reduce transmission—successfully reducing the reproductive number R below one. However, given the large pool of susceptible individuals that remain, complete relaxation of controls is likely to generate a substantial further outbreak. Vaccination remains the only foreseeable means of both containing the infection and returning to normal interactions and behaviour. Here, we consider the optimal targeting of vaccination within the UK, with the aim of minimising future deaths or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action and efficacy of the vaccine, targeting older age groups first is optimal and may be sufficient to stem the epidemic if the vaccine prevents transmission as well as disease. In line with most other countries across the globe, and in the absence of a vaccine or pharmaceutical treatments, the UK has relied heavily upon non-pharmaceutical social measures to control the impact of the COVID-19 pandemic. While this has proved effective in reducing the healthcare burden compared to an uncontrolled outbreak, this is achieved to the detriment of the economy, education and many other societal factors. As vaccines are developed which mitigate the disease, it is of great importance that they are delivered in an optimal manner—reducing mortality and healthcare demands. Using an age-structured mathematical model of SARS-CoV-2 transmission, we test different vaccine ordering strategies to identify which members of society should be targeted for vaccination first in order to achieve a specified health objective. In all scenarios we find vaccinating the most elderly and vulnerable first to have the greatest impact, though the ultimate success of any vaccination scheme will be highly contingent on the characteristics of the vaccine itself and the level of population uptake.
Funding Information
  • National Institute for Health Research (NIHR200411)
  • Engineering and Physical Sciences Research Council (EP/S022244/1)
  • Medical Research Council (MR/V009761/1)