Comparative study of cell growth and cellular adhesion on Ti-6Al-4V surfaces made by Selective Laser Melting followed by different surface post processing steps

Abstract
Selective laser melting is generally considered as to improve the design of medical implants, thus supporting medical treatment and maintaining mobility of invalid and older people. In particular, medical grade titanium alloys are in favour for spinal implants, as being nowadays manufactured by, e.g., milling. Selective laser melting offers the advantage of an adapted elasticity as to avoid stress shielding within the backbone by including complex lattice structures inside the individualized implant. For the integration into the backbone, surface properties, particularly surface roughness, are crucial with respect to biocompatibility and cell growth. Opposite to conventional milling, selective laser melting, however, results in an inferior surface roughness, leading to the necessity of downstream process steps.