Numerical Investigation of Interaction between Saccular Abdominal Aortic Aneurysms and Arterial Bifurcations

Abstract
In order to fully understand the interaction between the Abdominal Aortic Aneurysms (AAAs) and the arterial bifurcations interface it is important to attain more detailed information on blood hemodynamics stresses by using an accurate and real model of the vascular system of the human. In this study, a computer simulation, which integrates dinically acquired of 73-year-old male patient with saccular AAA MR angiograms image is considered. The numerical predictions for 2D of two models (with and without saccular AAA) – axisymmetric, rigid wall Newtonian and non-Newtonian Carreau blood model are presented. The finite volume method performed by ANSYS-Fluent Package was used to model this problem. The blood hemodynamics is considered as steady state condition in two values of Reynolds numbers of laminar flow condition. Blood hemodynamics is calculated for an improved set of dimensionless values pointer parameters include the pressure dimensionless, dimensionless Wall Shear Stress (WSS) and flow velocity. The results show that at the turbulent flow, velocity is with highest fluctuation profile and generate some vortices near the inner wall of AAA. The highest WSS levels are obtained downstream of AAA and at bifurcation apex. The presence of AAA in flow path will increase blood velocity of the distal by 35% for laminar and about 42% for turbulent. Finally, the velocity profile was compared with previous literature and give good agreement at the same computational condition.