Surface modification of titanium dioxide nanotubes with sulfur for highly efficient photocatalytic performance under visible light irradiation

Abstract
In this paper, the surface of titanium dioxide (TiO2) nanotubes (NTs) was decorated with sulfur by impregnation procedure. The crystalline structure and morphology of the S-TiO2 NT hybrid catalyst were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The chemical components of S-TiO2 NT-1 sample were analyzed by energy dispersive X-ray (EDX). The results showed that sulfur impurities were incorporated into TiO2 crystal structure and decorated on its surface due to the heat treatment temperature used throughout the fabrication process. Moreover, its photocatalytic reaction was evaluated by change of adsorption intensity of methyl orange (MO) aqueous solution at wavelength of 467 nm. This work revealed that the sulfur loaded onto TiO2 NT nanostructures exhibited excellent photocatalytic efficacy for the degradation of the MO dye compared with pristine TiO2 NTs (93.12 ± 0.02% and 80.21 ± 0.04% MO degradation efficacy under UV light versus visible-light regime, respectively, after 180 minutes). This was mainly governed by sulfur ions modified on the surface of TiO2 NTs which played a critical role in promoting the separation rate of photo-induced charge carriers.