New Search

Export article
Open Access

Copy-move Image Forgery Detection Using an Efficient and Robust Method Combining Un-decimated Wavelet Transform and Scale Invariant Feature Transform

Published: 28 September 2014

Abstract: In the present digital world, digital images and videos are the main carrier of information. However, these sources of information can be easily tampered by using readily available software thus making authenticity and integrity of the digital images an important issue of concern. And in most of the cases copy- move image forgery is used to tamper the digital images. Therefore, as a solution to the aforementioned problem we are going to propose a unique method for copy-move forgery detection which can sustained various pre-processing attacks using a combination of Dyadic Wavelet Transform (DyWT) and Scale Invariant Feature Transform (SIFT). In this process first DyWT is applied on a given image to decompose it into four parts LL, LH, HL, and HH. Since LL part contains most of the information, we intended to apply SIFT on LL part only to extract the key features and find a descriptor vector of these key features and then find similarities between various descriptors vector to conclude that there has been some copy-move tampering done to the given image. And by using DyWT with SIFT we are able to extract more numbers of key points that are matched and thus able to detect copy-move forgery more efficiently.
Keywords: Digital Image Forgery / DyWT (Dyadic Wavelet Transform) / SIFT (Scale Invariant Feature Transfrom).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "AASRI Procedia" .
References (15)
    Cited by 28 articles
      Back to Top Top