Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation

Abstract
The chemical compositions of late Miocene - Pleistocene basalts in Phu Quy island defines two major geochemical groups that reflect the formation and development of the island. The early low alkaline, TiO2 and P2O5, and high SiO2 group, comprising olivine and tholeiitic basalts, forms the base of the island. The later high alkaline, TiO2, and P2O5, and low SiO2 group, produced by central-type volcanic eruptions consisting of alkaline olivine and olivine basalts, overlies the early eruptive group. Crustal contamination may be expressed by the positive correlation between Ba/Nb and SiO2, which are higher in early eruptive basalts, possibly reflecting the involvement of crustal material, either in the source region or interaction of the melt on the way to the surface. However, negative relationship between Ba and SiO2, and positive correlation between Nb/Y and Zr/Y observed for two basaltic series may reflect the effect of melting pressures and degrees of partial melting. Methods of calculating the primitive basaltic melts based on the principle of olivine incremental additions to the basalt until the composition is equilibrated with the residual olivine at Fo89-90 may be used. The computed results show that the early basalts were generated under pressures of about 18-20 Kb (ca. 55-60 km) and the later basalts were formed in the pressure range of 20 to 25 Kb (corresponding to the depths about 60 to 75 km). The close range of melting pressures suggests decompression polybaric melting of a mantle source, which allows for mixing of various melt portions, resulting in the formation of geochemically linear relationship. It has been demonstrated that the post-opening volcanism was unrelated to an important tectonic phase and that the calculated extension factor (b) for the regional major extension fault systems is not significant (ca. 1.3) to trigger mantle melting. Therefore, the infiltration of asthenospheric flows resulting from the Neo-Tethys closure following the collision between India and Eurasia in the late Tertiary, may not only raise the mantle temperature leading to the melting but also appear to be the major driving force of marginal sea opening in the western Pacific, including the East Vietnam Sea. References Baker M.B., Hirschmann M.M., Ghiorso M.S., Stolper E.M., 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375, 308-311. Baker M.B., Stolper E.M., 1994. Determining the composition of high pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta 58, 2811-2827. Carter A., Roques D., Bristow C.S., 2000. Denudation history of onshore central Vietnam: constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics 322, 265-277. Ding W., Li J., Clift P.D., & Expedition I.O.D.P., 2016. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: constraints from multi-channel seismic data and IODP Expedition 349. Journal of Asian Earth Sciences, 115, 97-113. Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S., Taylor R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197-208. Flower M.F.J., Zhang M., Tu K., Xie G.H., Chen C.Y., 1992. Magmatism in the South China Basin 2.Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology 97, 65-87. Flower M., Tamaki K., Hoang N., 1998. Mantle Extrusion: A model for Dispersed Volcanism and DUPAL-like Asthenosphere in East Asia and the Western Pacific. In: Mantle dynamics and plate Interactions in East Asia, edited by: Flower, M et al. Geodynamic 27, 67-88. Flower M.F.J., Russo R.M., Tamaki K., Hoang Nguyen, 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM) ‘high-tide mark’, evidence for mantle extrusion caused by Tethyan closure. Tectonophysics 333, 9-34. Franke D., Savva D., Pubellier M., Steuer S., Mouly B., Auxietre J.L., Meresse F., Chamot L.R., 2013. The final rifting evolution in the South China Sea. Marine and Petroleum Geology xxx, 1-17. Fyhn M.B.W., Boldreel L.O., Nielsen L.H., 2009. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism. J. Tectonophysics, 478 (3-4), 184-214. Hirose K., Kushiro I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477-489. Hofmann A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297-314. Kamenetski V.S., Chung S.-L., Kamenetski M.B., Kuzmin D.V., 2012. Picrites from the Emeishan large igneous province, SW China: a compositional continuum in primitive magmas and their respective mantle sources. Journal of Petrology 53 (N10), 2095-2113. Kogiso T., Hirose K., Takahashi E., 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth and Planetary Science Letters 162, 45-61. Koloskov A.V., 1999. Ultrabasic inclusions and volcanics as a self-regulated geologic system. Nauchnyi Mir, Moscow (in Russian). Koloskov A.V., Fedorov P.I., Rashidov V.A., 2016. New data on products composition of the Quaternary volcanic activity in the shelf zone of NW margins of the South China Sea and the problem of asthenospheric diapirism. Koloskov A.V., Flerov G. B., Sharas’kin A. Y., 1989. Rift-Related Volcanism in the System of Eastern Asian Volcanic Belts. In Magmatism of Rifts: Petrology, Evolution, Geodynamics, Ed. by O. A. Bogatikov, Nauka, Moscow, 139-144 (in Russian). Koloskov A.V.,...