Abstract
Two chlorophyll fluorescence (ChlF) methods were used to study the effects of high light (photoinhibition) and dehydration, common stressors of the alpine environment, on primary photosynthetic processes in the moss Polytrichum commune from the Czech Republic,the Jeseníky Mountains.Photoinhibition(PI) was studied in fully hydrated thalli of P. commune and during the period of spontaneous desiccation. Time courses of Kautsky kinetics(KK)of ChlF and derived parameters:maximum quantum yield(FV/FM), effective quantum yeld (ΦPSII), and non-photochemical quenching parameters, were measured before and after the samples were treated with high light (1500 µmol m-2 s-1 PAR) for 60 min. Dehydration effects were tested in two sets of experiments with a Pulse-Amplitude-Modulation fluorometry (PAM) and Fast Chlorophyll Fluorescence induction curve (OJIP) techniques. In PAM tests, the desiccating samples were exposed to saturating light pulses every 10 min. in order to obtain ΦPSII and non-photochemical quenching (NPQ). In the second dehydration experiment, OJIP transients of ChlF were repeatedly recorded, OJIP-derived ChlF parameters were plotted against relative water content (RWC) monitored during desiccation. Combined ChF techniques provided insights into the mechanisms activated during P. commune desiccation, such as dissipation of excess absorbed energy through heat dissipation, and conformational changes or destructions of the light harvesting complexes. Combination of stressors resulted in amplified interference with the photosynthetic machinery, even when the added stressor (dehydration) was applied in low dose.